

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: **Soft Computing(20CS0531)**Course & Branch: **B.Tech** – **CSE,CSM**

Regulation: **R20** Year &Sem: **III-B.Tech & I - Sem**

UNIT –I INTRODUCTION TO SOFT COMPUTING

1	a	Illustrate the basic components of Artificial Intelligence and its applications.	[L3][CO1]	[8M]
-	b	Compare soft computing and hard computing	[L5][CO1]	[4M]
2	a	Explain the working principle of Artificial Neuron.	[L2][CO1]	[8M]
	b	Differentiate Biological Neuron and Artificial Neuron.	[L4][CO1]	[4M]
3		Summarize the following terms:		
		i)Fuzzy Systems ii) Genetic Algorithm	[L5][CO1]	[12M]
1	a	Distinguish between Supervised Learning and Unsupervised Learning.	[L4][CO1]	[6M]
4	b	Describe the different activation functions in Neural Networks.	[L2][CO1]	[6M]
5	Inf	er the classifications of Artificial Neural Networks.	[L2][CO1]	[6M]
6	a	Analyze Swarm Intelligent Systems.	[L4][CO1]	[6M]
O	b	Describe the role of Evolutionary Programming in Soft Computing.	[L2][CO1]	[6M]
7.	a	Explain McCulloch and Pitts Neuron Model.	[L2][CO1]	[6M]
	b	Demonstrate how AND function is implemented in M-P Neuron Model.	[L3][CO1]	[6M]
8		Describe Hebb network in Artificial Neural Networks.	[L2][CO1]	[12M]
9		Illustrate the Perceptron Network with neat diagram.	[L3][CO1	[12M]
10		Explain briefly Adaline and Madaline Networks.	[L2][CO1]	[12M]

UNIT –II ARTIFICIAL NEURAL NETWORKS

1		Analyze the Back propagation of Neural Network with neat diagram.	[L4][CO2]	[12M]
2		Discuss Self –Organizing Map algorithm and its features.	[L2][CO2]	[12M]
3		Illustrate Learning Vector Quantization with neat sketch.	[L3][CO2]	[12M]
4		Explain Hamming neural network with neat diagram.	[L2][CO2]	[12M]
5		Describe architectural functions and its characteristics of Hopfield Neural Network with neat sketch.	[L2][CO2]	[12M]
	a	Discuss Bidirectional Associate Memory and its applications.	[L2][CO2]	[8M]
6	b	Analyze the Characteristics , limitations and applications of Associative memory	[L4][CO2]	[4M]
7	a	Generalize the Adaptive Resonance Theory Neural Network	[L6][CO2]	[8M]
/	b	Identify some applications of ART Model	[L2][CO2]	[4M]
8		Illustrate the Support Vector Machine with neat diagram.	[L3][CO2]	[12M]
		Summarize the following terms		
9		i) Hebbian learning rule	[L2][CO2]	[12M]
		ii) Perceptron, Delta learning Rules		
10		Describe the structure of back propagation neural network and derive	[L2][CO2]	[1 43] [2]
		the learning rule for the back propagation algorithm.		[12M]

UNIT –III FUZZY SYSTEMS

1		Explain the various types of operations on Fuzzy Sets with examples.	[L2][CO3]	[12M]
2	a	Explain with neat block diagram the various components of a Fuzzy Logic System.	[L2][CO3]	[8M]
	b	Differentiate the fuzzy sets and classical sets.	[L4][CO3]	[4M]
3	a	Discuss the various operations on Classical Sets with simple examples.	[L2][CO3]	[6M]
	b	List out the various operations on Classical relations.	[L1][CO3]	[6M]
4	a	Describe the various fuzzy relations with suitable examples.	[L2][CO3]	[8M]
	b	Differentiate classical relations and Fuzzy relations	[L4][CO3]	[4M]
5		Explain the Frame work of Fuzzy Inference Systems with neat sketch.	[L2][CO3]	[12M]
6	a	Demonstrate the membership functions in fuzzy logic.	[L3][CO4]	[6M]
	b	Define Fuzzification and explain membership value assignment in fuzzy logic.	[L2][CO4]	[6M]
7		Analyze the different types of defuzzification methods with relevant mathematical expression and diagram.	[L4][CO4]	[12M]
8		Summarize the following terms:	[L5][CO4]	[1 2]
Ü		i) Fuzzy Arithmetic ii) Fuzzy Measures	[L3][CO4]	
9		Explain about Fuzzy rule base and approximate reasoning in Fuzzy logic.	[L2][CO4]	[12M]
10	a	Compare Mamdani FIS and Sugeno FIS	[L5][CO4]	[8M]
10	b	Demonstrate the Fuzzy Decision Making briefly.	[L3][CO4]	[4M]

UNIT –IV GNETIC ALGORITHMS

1	Explain the basic terminologies in Genetic Algorithm and illustrate the working of GA?	[L3][CO5]	[12M]
2	Discuss about Simple genetic algorithm with neat sketch.	[L2][CO5]	[12M]
3	Explain the Various Operators in genetic algorithm?	[L2][CO5]	[12M]
4	Summarize the following terms: i)Mutation operation ii) Selection operation.	[L5][CO5]	[12M]
5	a Analyze Inversion and Deletion Operators in GA.	[L4][CO5]	[6M]
5	b Describe the applications of genetic algorithm.	[L1][CO5]	[6M]
6	a How Fitness Function can be evaluated in Genetic Algorithm?	[L1][CO5]	[4M]
	b Describe various Encoding Techniques of Genetic algorithm.	[L2][CO5]	[8M]
7	Illustrate the different bitwise operators in GA.	[L3][CO5]	[12M]
8	Analyze the various cross over operations performed in GA.	[L2][CO5]	[12M]
9	a List out the different reproduction and inheritance operators used in GA.	[L2][CO5]	[6M]
	Identify the Advantages and Disadvantages of Genetic Algorithm.	[L2][CO5]	[6M]
10	Briefly explain Convergence of Genetic Algorithm.	[L2][CO5]	[12M]

UNIT -V

HYBRID SYSTEMS

1	Demonstrate the different types of hybrid systems.	[L3][CO6]	[12M]
2	Explain the LR type fuzzy Numbers.	[L2][CO6]	[12M]
3	Discuss in detail about Fuzzy – Genetic Hybrid System.	[L4][CO6]	[12M]
4	Design a Fuzzy Logic Controller using Genetic Algorithm.	[L6][CO6]	[12M]
5	Illustrate the operational features and working principle of fuzzy ARTMAP.	[L3][CO6]	[12M]
6	With a neat Architecture, explain Fuzzy Back propagation network.	[L2][CO6]	[12M]
7	Infer the Fuzzy Logic Controller with neat Architecture.	[L4][CO6]	[12M]
0	a Explain Genetic Algorithm based Back propagation network	[L1][CO6]	[5M]
8	b Illustrate Neuro – Fuzzy hybrid system with neat diagram.	[L3][CO6]	[7M]
9	Summarize the following i)Fuzzy Neuron ii)Neuro – Genetic System.	[L4][CO6] [L4][CO6]	[4M] [8M]
10	a Explain various Soft Computing Tools.	[L2][CO6]	[6M]
10	b Compare Neural Processing and Fuzzy Processing	[L5][CO6]	[6M]